Students should bear in mind that the main purpose of learning calculus is not just knowing how Accompanying the pdf file of this book is a set of Mathematica. aracer.mobi Table of Contents. Preface. Here are my online notes for my Calculus I course that I teach here at Lamar University . Calculus Made Easy has long been the most populal' calculus pl'imcl~ In this cmatician, Ilcarned the elements of calculus f,'om S. P. ompson's engaging.

Author: | LOUANN ZOULEK |

Language: | English, Spanish, Portuguese |

Country: | Guyana |

Genre: | Academic & Education |

Pages: | 798 |

Published (Last): | 23.09.2016 |

ISBN: | 840-2-76808-617-5 |

Distribution: | Free* [*Registration needed] |

Uploaded by: | LIZZETTE |

book on the Calculus, basedon the method of limits, that should be within the capacity of In both the Differential and Integral Calculus, examples illustrat-. The right way to begin a calculus book is with calculus. This chapter will jump directly into the two problems that the subject was invented to solve. You will see. Exercises and Problems in Calculus. John M. Erdman. Portland State University. Version August 1, c John M. Erdman. E-mail address: [email protected]

Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device should be able to scroll to see them and some of the menu items will be cut off due to the narrow screen width. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Because I wanted to make this a fairly complete set of notes for anyone wanting to learn calculus I have included some material that I do not usually have time to cover in class and because this changes from semester to semester it is not noted here. Likewise, even if I do work some of the problems in here I may work fewer problems in class than are presented here. Sometimes questions in class will lead down paths that are not covered here. You should always talk to someone who was in class on the day you missed and compare these notes to their notes and see what the differences are. This is somewhat related to the previous three items, but is important enough to merit its own item. Using these notes as a substitute for class is liable to get you in trouble. As already noted not everything in these notes is covered in class and often material or insights not in these notes is covered in class. Here is a listing and brief description of the material that is in this set of notes.

But also many other tutorials are accessible just as easily! Computer PDF guide you and allow you to save on your studies. Computer PDF is also courses for training in algebra, analysis, numerical analysis, probability, statistics, mathematics financial, mathematical computer and many others IT.

You should come see our Mathematics documents. You will find your happiness without trouble! The latest news and especially the best tutorials on your favorite topics, that is why Computer PDF is number 1 for courses and tutorials for download in pdf files - Understanding Basic Calculus.

Download other tutorials for advice on Understanding Basic Calculus. We will do everything to help you! And you dear surfers what you need? The best course and tutorial, and how to learn and use Understanding Basic Calculus.

Home Mathematics Understanding Basic Calculus. PDF book.

Beginners Created: March 28, Size: Chung Downloads: Summary on tutorial Understanding Basic Calculus. Download the file. We will cover the basic definition of an exponential function, the natural exponential function, i.

Logarithm Functions — In this section we will discuss logarithm functions, evaluation of logarithms and their properties.

We will discuss many of the basic manipulations of logarithms that commonly occur in Calculus and higher classes. Exponential and Logarithm Equations — In this section we will discuss various methods for solving equations that involve exponential functions or logarithm functions.

Common Graphs — In this section we will do a very quick review of many of the most common functions and their graphs that typically show up in a Calculus class.

Limits - In this chapter we introduce the concept of limits. We will also give a brief introduction to a precise definition of the limit and how to use it to evaluate limits. Tangent Lines and Rates of Change — In this section we will introduce two problems that we will see time and again in this course : Rate of Change of a function and Tangent Lines to functions. Both of these problems will be used to introduce the concept of limits, although we won't formally give the definition or notation until the next section.

The Limit — In this section we will introduce the notation of the limit. We will also take a conceptual look at limits and try to get a grasp on just what they are and what they can tell us. We will be estimating the value of limits in this section to help us understand what they tell us. We will actually start computing limits in a couple of sections.

One-Sided Limits — In this section we will introduce the concept of one-sided limits. We will discuss the differences between one-sided limits and limits as well as how they are related to each other. We will also compute a couple of basic limits in this section. Computing Limits — In this section we will looks at several types of limits that require some work before we can use the limit properties to compute them.

We will also look at computing limits of piecewise functions and use of the Squeeze Theorem to compute some limits.

Infinite Limits — In this section we will look at limits that have a value of infinity or negative infinity. We will concentrate on polynomials and rational expressions in this section. Continuity — In this section we will introduce the concept of continuity and how it relates to limits. We will also see the Intermediate Value Theorem in this section and how it can be used to determine if functions have solutions in a given interval.

The Definition of the Limit — In this section we will give a precise definition of several of the limits covered in this section. We will work several basic examples illustrating how to use this precise definition to compute a limit.

Derivatives - In this chapter we introduce Derivatives. We cover the standard derivatives formulas including the product rule, quotient rule and chain rule as well as derivatives of polynomials, roots, trig functions, inverse trig functions, hyperbolic functions, exponential functions and logarithm functions. We also cover implicit differentiation, related rates, higher order derivatives and logarithmic differentiation.

The Definition of the Derivative — In this section we define the derivative, give various notations for the derivative and work a few problems illustrating how to use the definition of the derivative to actually compute the derivative of a function.

Interpretation of the Derivative — In this section we give several of the more important interpretations of the derivative. We discuss the rate of change of a function, the velocity of a moving object and the slope of the tangent line to a graph of a function. Differentiation Formulas — In this section we give most of the general derivative formulas and properties used when taking the derivative of a function.

Examples in this section concentrate mostly on polynomials, roots and more generally variables raised to powers. Product and Quotient Rule — In this section we will give two of the more important formulas for differentiating functions. We will discuss the Product Rule and the Quotient Rule allowing us to differentiate functions that, up to this point, we were unable to differentiate. Derivatives of Trig Functions — In this section we will discuss differentiating trig functions. Derivatives of Exponential and Logarithm Functions — In this section we derive the formulas for the derivatives of the exponential and logarithm functions.

Derivatives of Inverse Trig Functions — In this section we give the derivatives of all six inverse trig functions. We show the derivation of the formulas for inverse sine, inverse cosine and inverse tangent.

Derivatives of Hyperbolic Functions — In this section we define the hyperbolic functions, give the relationships between them and some of the basic facts involving hyperbolic functions. We also give the derivatives of each of the six hyperbolic functions and show the derivation of the formula for hyperbolic sine.

Chain Rule — In this section we discuss one of the more useful and important differentiation formulas, The Chain Rule. With the chain rule in hand we will be able to differentiate a much wider variety of functions. As you will see throughout the rest of your Calculus courses a great many of derivatives you take will involve the chain rule!

Implicit Differentiation — In this section we will discuss implicit differentiation. Not every function can be explicitly written in terms of the independent variable, e. Implicit differentiation will allow us to find the derivative in these cases. Knowing implicit differentiation will allow us to do one of the more important applications of derivatives, Related Rates the next section. Related Rates — In this section we will discuss the only application of derivatives in this section, Related Rates.

In related rates problems we are give the rate of change of one quantity in a problem and asked to determine the rate of one or more quantities in the problem. This is often one of the more difficult sections for students.

We work quite a few problems in this section so hopefully by the end of this section you will get a decent understanding on how these problems work. Higher Order Derivatives — In this section we define the concept of higher order derivatives and give a quick application of the second order derivative and show how implicit differentiation works for higher order derivatives.

Logarithmic Differentiation — In this section we will discuss logarithmic differentiation. Logarithmic differentiation gives an alternative method for differentiating products and quotients sometimes easier than using product and quotient rule. More importantly, however, is the fact that logarithm differentiation allows us to differentiate functions that are in the form of one function raised to another function, i.

Applications of Derivatives - In this chapter we will cover many of the major applications of derivatives. Critical Points — In this section we give the definition of critical points. Critical points will show up in most of the sections in this chapter, so it will be important to understand them and how to find them.

We will work a number of examples illustrating how to find them for a wide variety of functions. Minimum and Maximum Values — In this section we define absolute or global minimum and maximum values of a function and relative or local minimum and maximum values of a function.

We also give the Extreme Value Theorem and Fermat's Theorem, both of which are very important in the many of the applications we'll see in this chapter. Finding Absolute Extrema — In this section we discuss how to find the absolute or global minimum and maximum values of a function. In other words, we will be finding the largest and smallest values that a function will have.

The Shape of a Graph, Part I — In this section we will discuss what the first derivative of a function can tell us about the graph of a function. The first derivative will allow us to identify the relative or local minimum and maximum values of a function and where a function will be increasing and decreasing. We will also give the First Derivative test which will allow us to classify critical points as relative minimums, relative maximums or neither a minimum or a maximum.

The Shape of a Graph, Part II — In this section we will discuss what the second derivative of a function can tell us about the graph of a function. The second derivative will allow us to determine where the graph of a function is concave up and concave down.

The second derivative will also allow us to identify any inflection points i. We will also give the Second Derivative Test that will give an alternative method for identifying some critical points but not all as relative minimums or relative maximums.

With the Mean Value Theorem we will prove a couple of very nice facts, one of which will be very useful in the next chapter. We will discuss several methods for determining the absolute minimum or maximum of the function. Examples in this section tend to center around geometric objects such as squares, boxes, cylinders, etc. More Optimization Problems — In this section we will continue working optimization problems.

The examples in this section tend to be a little more involved and will often involve situations that will be more easily described with a sketch as opposed to the 'simple' geometric objects we looked at in the previous section. Linear Approximations — In this section we discuss using the derivative to compute a linear approximation to a function. We can use the linear approximation to a function to approximate values of the function at certain points.

While it might not seem like a useful thing to do with when we have the function there really are reasons that one might want to do this.